a2 United States Patent

Abjanic et al.

US009473411B2

US 9,473,411 B2
*Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

SCALABLE NETWORK APPARATUS FOR
CONTENT BASED SWITCHING OR
VALIDATION ACCELERATION

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: John B. Abjanic, San Diego, CA (US);
David A. Marlatt, San Diego, CA
(US); John A. Malo, Jr., San Diego,
CA (US)

Assignee: Intel Corporation, Santa Clara, CA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/701,310

Filed: Apr. 30, 2015

Prior Publication Data

US 2015/0236958 Al Aug. 20, 2015

Related U.S. Application Data

Continuation of application No. 14/494,410, filed on
Sep. 23, 2014, now Pat. No. 9,369,522, which is a
division of application No. 13/706,286, filed on Dec.
5, 2012, now Pat. No. 8,862,773, which is a
continuation of application No. 12/350,675, filed on
Jan. 8, 2009, now Pat. No. 8,346,969, which is a
division of application No. 09/566,800, filed on May
8, 2000, now Pat. No. 7,512,711, which is a
continuation-in-part of application No. 09/549,041,
filed on Apr. 13, 2000, now Pat. No. 6,732,175, which
is a continuation-in-part of application No.
09/562,104, filed on May 1, 2000, now Pat. No.
7,146,422.

(51) Int. CL
GOGF 15/16 (2006.01)
HO4L 12/803 (2013.01)
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)
HO4L 12/801 (2013.01)
HO4L 12/24 (2006.01)
GOGF 17/30 (2006.01)

(52) US.CL

CPC ... HO4L 47/125 (2013.01); GO6F 17/30896
(2013.01); HO4L 41/0266 (2013.01); HO4L

47/33 (2013.01); HO4L 67/10 (2013.01);

HO04L 69/22 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
4,216,462 A 8/1980 McGrath et al.
5,396,613 A 3/1995 Hollaar
(Continued)

OTHER PUBLICATIONS

“Enabling Software to Speak the Language of Business”, Microsoft
Corporation, Jan. 7, 2000, BizTalk Framework 1.0a, 5 pages.

(Continued)

Primary Examiner — Phuoc Nguyen
(74) Attorney, Agent, or Firm — Patent Capital Group

(57) ABSTRACT

A network apparatus is provided that may include one or
more security accelerators. The network apparatus also
includes a plurality of network units cascaded together.
According to one embodiment, the plurality of network units
comprise a plurality of content based message directors,
each to route or direct received messages to one of a
plurality of application servers based upon the application
data in the message. According to another embodiment, the
plurality of network units comprise a plurality of validation
accelerators, each validation accelerator to validate at least
a portion of a message before outputting the message.

28 Claims, 11 Drawing Sheets

US 9,473,411 B2
Page 2

(56)

5,473,691
5,550,984
5,634,010
5,678,010
5,862,328
5,862,344
5,870,605
5,875,242
5,896,379
5,931,917
5,937,165
5,943,426
5,951,650
5,956,339
5,987,132
5,987,232
5,987,500
5,995,625
6,002,767
6,006,264
6,011,910
6,012,098
6,018,721
6,018,801
6,026,379
6,032,190
6,037,934

6,038,488
6,061,734
6,067,354
6,076,107
6,076,108

6,091,724
6,105,008
6,167,438
6,167,448
6,167,523
6,173,322

6,198,783
6,219,691
6,226,675
6,256,676
6,266,335
6,343,738
6,366,663
6,375,469
6,400,381
6,408,311
6,415,318
6,442,588
6,446,256
6,466,977

6,477,646
6,480,860
6,480,865
6,507,856
6,507,857
6,512,824
6,519,617
6,549,513
6,567,853
6,571,279
6,571,292
6,578,192
6,584,459
6,591,260
6,600,683
6,621,505

References Cited

U.S. PATENT DOCUMENTS

B e B B 0 D B B 0 3 B B 0 0 B D 0 B B

A
Bl

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
Bl
Bl
Bl
Bl
B2
Bl

12/1995
8/1996
5/1997

10/1997
1/1999
1/1999
2/1999
2/1999
4/1999
8/1999
8/1999
8/1999
9/1999
9/1999

11/1999

11/1999

11/1999

11/1999

12/1999

12/1999
1/2000
1/2000
1/2000
1/2000
2/2000
2/2000

*3/2000

3/2000
5/2000
5/2000
6/2000
*6/2000

7/2000
8/2000
12/2000
12/2000
12/2000
*1/2001

3/2001
4/2001
5/2001
7/2001
7/2001
2/2002
4/2002
4/2002
6/2002
6/2002
7/2002
8/2002
9/2002
*10/2002

11/2002
11/2002
11/2002
1/2003
1/2003
1/2003
2/2003
4/2003
5/2003
5/2003
5/2003
6/2003
6/2003
7/2003
7/2003
9/2003

Menezes et al.
Gelb
Ciscon et al.
Pittenger et al.
Colyer
Hart
Bracho et al.
Glaser et al.
Haber
Nguyen et al.
Schwaller et al.
Frith et al.
Bell et al.
Harada et al.
Rowney
Tabuki
Arunachalam
Sudia et al.
Kramer
Colby et al.
Chau et al.
Bayeh et al.
Aziz et al.
Palage et al.
Haller et al.
Bremer et al.
Himmel GOGF 17/30884
707/E17.114

Barnes et al.
London
Bauer et al.
Chen et al.
Courts GOG6F 17/3089

707/E17.116

Chandra et al.

Davis et al.

Yates et al.

Hemphill et al.

Strong

Hu GOGF 9/505
709/217

Campana, Jr.
Youn
Meltzer et al.
Taylor et al.
Bhaskaran
Ogilvie
Bauer et al.
Brown
Barrett et al.
Baisley et al.
Aggarwal et al.
Clark et al.
Hyman et al.
Sitaraman HO4L 29/12783
709/223

Krishna et al.
Monday

Lee et al.

Chen et al.
Yalcinalp

Hsieh et al.
Wanderski et al.
Chao et al.
Shomler

Herz et al.
Fletcher

Boehme et al.
Chang et al.
Schwarzhoff et al.
Yamane
Beauchamp et al.

6,629,146 Bl 9/2003 Mohri
6,631,497 B1 10/2003 Jamshidi et al.
6,654,914 B1 11/2003 Kaffine et al.
6,658,260 B2 12/2003 Knotts
6,675,219 Bl 1/2004 Leppinen et al.
6,675,353 Bl 1/2004 Friedman
6,691,165 B1* 2/2004 Bruck HO04L 29/12009
709/227
6,732,175 Bl 5/2004 Abjanic
6,766,305 Bl 7/2004 Fucarile et al.
6,810,429 B1 10/2004 Walsh et al.
6,826,597 B1 11/2004 Lonnroth et al.
6,895,551 Bl 5/2005 Huang et al.
6,925,631 B2 8/2005 Golden
7,028,312 Bl 4/2006 Merrick et al.
7,146,422 Bl 12/2006 Marlatt et al.
7,167,924 Bl 1/2007 Symonds et al.
7,512,711 Bl 3/2009 Abjanic et al.
7,590,644 B2 9/2009 Matsakis et al.
7,620,980 B1 11/2009 Wood et al.
7,689,907 B2 3/2010 Sankar
7,694,287 B2 4/2010 Singh et al.
7,774,402 B2* 82010 Singhccoccenee. HO4L 63/0263
709/201
8,135,772 B2* 3/2012 WiSerccccocvvvrrnnene. GOG6F 9/465
709/201
8,346,969 B2 1/2013 Abjanic et al.
8,650,320 B1 2/2014 Merrick et al.
8,862,773 B2 10/2014 Abjanic et al.
9,083,715 B2* 7/2015 Gunturu HO4L 67/1029
2001/0056504 Al 12/2001 Kuznetsov
2002/0032783 Al 3/2002 Tuatini
2002/0073399 Al 6/2002 Golden
2002/0099734 Al 7/2002 Yassin et al.
2005/0198373 Al 9/2005 Saunderson et al.
2005/0273772 Al 12/2005 Matsakis et al.
2009/0216900 Al 8/2009 Abjanic et al.
2013/0173786 Al 7/2013 Abjanic et al.
2015/0106423 Al 4/2015 Abjanic et al.
2015/0237023 Al 8/2015 Abjanic et al.

OTHER PUBLICATIONS

Bray et al.; Extensible Markup Language (XML) 1.0; Feb. 10, 1998,
(http://www.w3.0org/TR/1998/REC-xml-19980210.pdf.), 36 pages.
“The Advantages of F5’s HTTP Header Load Balancing Over
Single-Point URL Parsing Solutions”, F5 Networks, Inc. (http:/f5.
com/solutions/whitepapers/http html), Mar. 16, 2005.

Aaron Skonnard, “Soap: The Simple Object Access Protocol”,
Microsoft Corporation, pp. 1-10, Retrieved from the www on Mar.
16, 2005 at: <microsoft.com/mind/0100/soap/soap>.

International Search Report received for PCT Patent Application
No. PCT/US2001/010383, mailed Jul. 11, 2002, 3 pages.

Tuaniti, “Shared Service Functionality Invocation”, U.S. Appl. No.
60/173,666, filed Dec. 30, 1999, pp. 1-24.

U.S. Appl. No. 14/494,410, filed on Sep. 23, 2014 and entitled
Scalable Network Apparatus for Content Based Switching or Vali-
dation Acceleration, inventors John B. Abjanic et al.

USPTO Non-Final Action in U.S. Appl. No. 14/494,410 mailed on
Apr. 9, 2015.

USPTO Final Action in U.S. Appl. No. 14/494,410 mailed on Aug.
28, 2015.

U.S. Appl. No. 14/701,237, filed on Apr. 30, 2015 and entitled
Scalable Network Apparatus for Content Based Switching or Vali-
dation Acceleration, inventors John B. Abjanic et al.

Notice of Allowance in U.S. Appl. No. 14/494,410 mailed on Feb.
1, 2016.

Notice of Allowance in U.S. Appl. No. 14/494,410 mailed on Feb.
25, 2016.

USPTO Non-Final Action in U.S. Appl. No. 14/701,237 mailed on
Jun. 17, 2016.

* cited by examiner

US 9,473,411 B2

Sheet 1 of 11

Oct. 18, 2016

U.S. Patent

. T P OUVUU VU VSRR

SHEAMIE NOUYI Y
S0y BEOGN OMNIBEEOUES

git

oy

{ Old

SIMEN

[ha

s R

HAGHELEG
235

TRRART MM MMM mess ammanma eAeh WMNAD deee Seiten snent e SRR AR AR WA vere e e

- PRV

S el

U s e e

P
“hed¥

FRGMAR

J

U.S. Patent Oct. 18, 2016 Sheet 2 of 11 US 9,473,411 B2

oy
ok
s
5y

AT IR A YRR RS
AOE ERE DATA Y

s

%

e T

Sy TO A

U.S. Patent

Oct. 18, 2016

Sheet 3 of 11

US 9,473,411 B2

R S
R SR L
R AR

-y

AN ATR Fug, WS,

ot

H
g' PARSER bag.
k!

AP DATR-RION A

o

BRI
THARLATHNN
RGN T

i

SRR
GECERNN GRTPLEY
¢

&
7

LA
BEERACRY BE4

£

#
i
§

"y,

FEG

FTIVRVPRVEPING VENVRVIRIE

™ PO

R O

> R PARSERY
FEE

ERSSTERT AR

H fepz e died

m o N

"
i
i P BRSNS

H

{

i
:

i
H

EOAR BAETSALES

Fitg. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 11 US 9,473,411 B2

US 9,473,411 B2

Sheet 5 of 11

Oct. 18, 2016

U.S. Patent

FHEANEE

%

PRSI

§ "9l

=l

S5 TERANES WEY

LRSS

HTE SINARRE HNEY

Wi

RS B

KL
foses

S IR

Ths
TR TN B
RNV BAEYE
VRN
PR I WK

US 9,473,411 B2

Sheet 6 of 11

Oct. 18, 2016

U.S. Patent

LYV

U.S. Patent Oct. 18, 2016 Sheet 7 of 11 US 9,473,411 B2

SAICTYPE hogeforssle “hoge ™|

U.S. Patent Oct. 18, 2016 Sheet 8 of 11 US 9,473,411 B2

U.S. Patent Oct. 18, 2016 Sheet 9 of 11 US 9,473,411 B2

U.S. Patent Oct. 18, 2016 Sheet 10 of 11 US 9,473,411 B2

i
i
i
i
i
i
i
i
i
i
i
i
i

U.S. Patent Oct. 18, 2016 Sheet 11 of 11 US 9,473,411 B2

US 9,473,411 B2

1
SCALABLE NETWORK APPARATUS FOR
CONTENT BASED SWITCHING OR
VALIDATION ACCELERATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation (and claims the benefit
of priority under 35 U.S.C. §120) of U.S. patent application
Ser. No. 14/494,410 filed on Sep. 23, 2014 and entitled
SCALABLE NETWORK APPARATUS FOR CONTENT
BASED SWITCHING OR VALIDATION ACCELERA-
TION, which application is a divisional of U.S. patent
application Ser. No. 13/706,286 filed on Dec. 5, 2012, now
issued as U.S. Pat. No. 8,862,773, which application is a
continuation U.S. patent application Ser. No. 12/350,675
filed on Jan. 8, 2009, now issued as U.S. Pat. No. 8,346,969,
which application is a divisional of U.S. patent application
Ser. No. 09/566,800 filed on May 8, 2000, now issued as
U.S. Pat. No. 7,512,711, which application is a continuation-
in-part of U.S. patent application Ser. No. 09/549,041, filed
on Apr. 13, 2000, now issued as U.S. Pat. No. 6,732,175, and
is also a continuation-in-part of U.S. patent application Ser.
No. 09/562,104 filed on May 1, 2000, now issued as U.S.
Pat. No. 7,146,422. The disclosures of the prior applications
are considered part of and are hereby incorporated by
reference in their entirety in the disclosure of this applica-
tion.

FIELD

The invention generally relates to computers and com-
puter networks and in particular to a scalable network
apparatus which may be cascaded together to accommodate
increased traffic.

BACKGROUND

While increasingly more successful in their roles as store
and forward data systems, computer networks such as the
Internet are experiencing tremendous growth as transaction-
based, mission critical business applications, Web site own-
ers, and business servers are overwhelmed by explosive
traffic growth. The traditional approach is to buy more
servers and network bandwidth. There is typically no dis-
tinction between levels of service, but rather a first-in
first-out (FIFO) best efforts approach has been the default.
However, this has resulted in uneven performance and
undifferentiated service. Clearly, there is a need for a tech-
nique to allow service providers to intelligently offer differ-
ent services and different levels of service depending on the
circumstances.

Systems are available that allow messages to be routed
based upon headers or header information. For example, in
Hypertext Transter Protocol (HTTP), a Post request method
includes a request line, a header (or one or more headers)
and a body. The request line includes a pointer to a requested
resource or program to process the message, such as a
Universal Resource Identifier (URI) or Universal Resource
Locator (URL). The HTTP header may also include the type
of message, the length of the body, and the date. There are
systems that parse or examine the URL (i.e., the request line)
and/or the HTTP header, and then route the message to a
destination node based on the URL and/or header. One such
system is described in “The Advantages of F5’s HTTP
Header Load Balancing Over Single-Point URL Parsing

15

20

25

30

35

40

45

50

55

60

2

Solutions.” However, this approach is very limited as
switching decisions are based only on the HTTP header
and/or URL.

XML, or eXtensible Markup Language v. 1.0 was adopted
by the World Wide Web Consortium (W3C) on Feb. 10,
1998. XML provides a structured syntax for data exchange.
XML is a markup language, like HTML. Most markup
languages, like HTML, are fixed markup languages. That is,
the fixed markup languages (including HTML) include a set
of fixed tags for crafting a document. On the other hand,
XML does not define a fixed set of tags, but rather, only
defines a syntax or structured format through which users
can define their own set of XML tags. There presently are a
number of XML based languages which define their own set
of tags using the XML syntax. XML has the further advan-
tage because the actual data is separated from the presen-
tation of the data, in contrast with HTML which combines
these two items. As a result, XML has the potential to
become a standard by which most computers, servers and
applications will exchange or communicate data.

Another system, known as BizTalk™, improves slightly
on the URL parsing technique by providing a system that is
compatible with XML -based messages. As described in
“BizTalk Framework 1.0a Independent Document Specifi-
cation,” Microsoft Corp., Jan. 7, 2000, BizTalk defines a
specific set of tags (or BizTags) within a message that are
used to specify business document handling (p. 7). A Biztalk
server uses information contained in the Biztags to deter-
mine the correct transport-specific destination address(es).
(pp- 9, 11). However, the tags used to mark up business
transaction information within the message body are deter-
mined by the individual implementation. These implemen-
tation-specific tags (provided in the content or business
transaction information of the message body) are not con-
sidered BizTags (p. 11). The BizTalk system is very limited
because it can route or switch messages based only upon
header or introductory information, based upon the fixed set
of the BizTalk tags. The BizTalk system does not make
decisions or route/switch messages based upon the actual
content of the application data or business information (e.g.,
business transaction information) within the message body.
Moreover, performing such processing at an application
server can inhibit or decrease the number of documents or
transactions that can be processed by the application server

In addition, the XML standard only requires that a
received document be checked to confirm that it meets the
basic syntax and format of XML (i.e., determine whether the
document is “well formed”). In addition, the XML standard
also allows a document to be validated, which is a more
rigorous check to determine if the structure or grammar of
the XML document complies with structure required by the
particular XML based language. Although not required by
the XML specification, many application servers or other
processing nodes that process XML documents include a
validating XML processor (or a validating XML parser) to
check the XML application data for validity against a
validation template. As a result, the burden of performing
document validation can also significantly decrease the
number of documents or transactions that can be processed
by the application server or processing node.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and a better understanding of the present
invention will become apparent from the following detailed
description of exemplary embodiments and the claims when
read in connection with the accompanying drawings, all

US 9,473,411 B2

3

forming a part of the disclosure of this invention. While the
foregoing and following written and illustrated disclosure
focuses on disclosing example embodiments of the inven-
tion, it should be clearly understood that the same is by way
of illustration and example only and is not limited thereto.
The spirit and scope of the present invention is limited only
by the terms of the appended claims.

The following represents brief descriptions of the draw-
ings, wherein:

FIG. 1 is a block diagram of a network system according
to an example embodiment.

FIG. 2 is a flow chart illustrating an operation of content
based message director according to an example embodi-
ment.

FIG. 3 is a block diagram illustrating a director according
to an example embodiment.

FIG. 4 is a block diagram illustrating a traffic manager
according to another example embodiment.

FIG. 5 is a block diagram illustrating another example
operating environment for a content based message director
according to an example embodiment.

FIG. 6 is a block diagram illustrating a network system
according to another example embodiment.

FIG. 7 is a diagram illustrating an example message
according to an example embodiment.

FIG. 8 is a flow chart illustrating an example operation of
a validation accelerator according to an example embodi-
ment.

FIG. 9 is a block diagram illustrating a network apparatus
according to another example embodiment.

FIG. 10 is a block diagram illustrating an example scal-
able network apparatus including multiple validation accel-
erators according to an example embodiment.

FIG. 11 is a block diagram illustrating an example scal-
able network apparatus including multiple content based
message directors according to an example embodiment.

DETAILED DESCRIPTION
1. Content Based Switching

Referring to the Figures in which like numerals indicate
like elements, FIG. 1 is a block diagram of a network system
according to an example embodiment. As shown in FIG. 1,
a variety of clients may be coupled or connected to a data
center 135 via a network, such as the Internet 130. The
clients, for example, may include a server 110 that includes
an application program 112, a computer 120 (such as a
personal computer or laptop) that may include a web
browser 122 and a wireless device 132, such as a personal
digital assistant (PDA) or a wireless (or cellular) telephone.
Wireless device 132 may be coupled to the Internet 130 or
to a data center 135 via communications links 134 and 136,
respectively. Links 134 and 136 each may include one or
more of a wireless link (e.g., cellular or other link) or a
wireline link. Each of the clients, including server 110,
computer 120 and device 132 can send and receive messages
over the Internet 130 and may use a variety of different
protocols or transports.

The data center 135 is provided for sending, receiving and
processing a wide variety of messages, requests, business
transactions, purchase orders, stock quotes or stock trades,
and other information. The data center 135 includes several
processing nodes (e.g., servers), including server 150, server
160 and server 170 for handling the various orders, business
transactions and other requests. The different servers in data
center 135 may be allocated to provide different services, or

10

15

20

25

30

35

40

45

50

55

60

65

4

even different levels of services. According to an example
embodiment, the clients and the data center 135 exchange
business transaction information or other information by
sending and receiving XML messages (data provided in
XML or in a XML based language), or messages based upon
another type of structured syntax for data interchange.

The various servers (e.g., servers 150, 160 and 170) are
coupled to a traffic manager 140 via a switch 165. Traffic
manager 140 may perform a variety of functions relating to
the management of traffic, including load balancing (e.g.,
balancing the load of incoming messages or requests across
the available servers according to some policy, such as
round-robin, least number of connections, or other load
balancing technique).

Referring to the clients again in FIG. 1, application
program 112 may be a business program or a program for
managing inventory, orders or other business transactions.
For example, application program 112 may automatically
and electronically detect that inventory has decreased below
a threshold value and then automatically generate and send
a purchase order to a supplier’s server at data center 135 to
request a shipment of additional supplies or inventory. Thus,
server 110 may initiate, for example, a business-to-business
(B2B) transaction by sending an electronic order to the
supplier’s remote server located at data center 135.

As a another example, web browser 122 may request web
pages, business information or other information from a
remote server (e.g., located at data center 135). Web browser
122, may also send or post purchase orders, business trans-
actions or other business information to a remote server,
which may be located at data center 135. Wireless device
132 may receive information or data related to purchase
orders, business transactions, web pages, stock quotes, game
scores and the like from one or more remote servers (such
as servers located at data center 135).

According to an embodiment, the server 110, computer
120 and wireless device 132 each may communicate or
interchange data with one or more remote servers (e.g.,
servers 150, 160 and 170) by sending and receiving XML
data (i.e., application data that is encoded or formatted
according to the XML standard or according to one or more
XML based languages).

According to an example embodiment, the traffic manager
140 includes a content based message director 145 to direct
or switch messages to a selected server based upon the
content of application data, such as business transaction
information (which may be provided as XML data). Traffic
manager 140 and/or message director 145 may be software,
hardware or a combination of both, and may even be
provided on or as part of a network processor. It should be
noted that director 145 may operate by itself, or as part of a
larger network apparatus, such as part of a traffic manager
140.

According to an example embodiment, because of the
advantages of XML, application data can advantageously
exchanged between the servers of data center 135 and one or
more clients or computing nodes by sending and receiving
messages that include application data that is encoded or
formatted according to the XML standard. Therefore,
according to an embodiment, director 145 may be a XML
director because it directs (or routes/switches) the incoming
message to a particular server based upon the XML data in
the message. The XML data preferably complies with the
format or syntax required by the XML standard. A document
that uses tag formats (e.g., start tags, end tags) and other

US 9,473,411 B2

5

syntax (e.g., to markup data) that complies with the XML
standard is considered to be a “well-formed” XML docu-
ment.

Therefore, in an exemplary embodiment, content based
message director 145 is a XML director. However, it should
be understood that director 145 can direct or switch mes-
sages having basically any type of structured syntax, includ-
ing any type of markup language.

An advantageous aspect of the embodiment of the traffic
manager 140 and director 145 shown in FIG. 1 is that the
traffic manager 140 and the director 145 are located in front
of the one or more application servers or processing nodes.
By locating the traffic manager 140 and director 145 in a
computer, server or computing system in front of the pro-
cessing nodes or servers (as shown in FIG. 1) (e.g., coupled
between the network 130 and the servers), the traffic man-
agement functionality and the functionality of the director
145 can be off-loaded from an application server to a
separate and/or dedicated network apparatus or network
system. This can advantageously relieve the processing
nodes or application servers from this additional processing
overhead.

FIG. 2 is a flow chart illustrating an operation of content
based message director according to an example embodi-
ment. At block 210, the director 145 receives a message. The
message may be sent over any transport or protocol(s), such
as Transmission Control Protocol (TCP), File Transfer Pro-
tocol (FTP), Simple Mail Transfer Protocol (SMTP), Wire-
less Application Protocol (WAP, which may be used to send
and receive information with wireless devices), Hypertext
Transfer Protocol (HTTP), etc. The general teachings and
the operation of the invention are not dependent upon any
particular transport or protocol, but rather are transport-
independent.

A HTTP Post is an example of a message. The format for
an HTTP Post message (or HT'TP request) may be presented
as:

request-line (the URL); identifies a program for processing the message
headers (0 or more)

<blank line>

body (the application data or the XML data; only for a POST)

Here’s an example:

POST www;acme.com/purchasing/order.cgi HTTP/1.1
Content-Type: text/xml
Content-Length: 1230
User-Agent: Cern-Line Mode/2.15
Date: 3/27/00
<XML>
<From>intel.com</From>
<To>bookstore.com</To>
<PurchaseBook>
<ISBN>02013798233</ISBN>
<PurchaseAmount> 98</Purchase Amount>
</PurchaseBook>
</XML>

In this example, the URL (or request line) is provided in
a request line to identify a program or application to process
the message. Several header lines (Content-type, Content-
length, date, etc.) make up an HTTP header. The application
data is provided after the HTTP header, and in this example
is provided as XML data. A start tag <XML>, and </XML>,
an end tag, identify the start and end, respectively, of the
application data (or XML data). This XML application data

10

15

20

25

30

35

40

45

50

55

60

65

6

is also referred to as a XML document. The XML document
includes markup characters (or tags) which describe data,
and data characters. As an example, a “To” element of the
above XML document is written as: <I'o>bookstore.com</
To>. Where<To> is a start Tag and </To> is an end tag,
which are markup characters because they describe the
XML data characters (bookstore.com). The business trans-
action information describes the business transaction (To,
From, items purchased, purchase amount, quantity, etc.), and
is not included in the URL, the HTTP header, or any other
header (e.g., IP header, TCP header) of the envelope used for
sending the message.

While the prior art performed switching based on the
request line or URL and/or the HTTP header, the present
invention is directed to a technique to perform switching at
a network apparatus based upon the application data, such as
XML data (which includes business transaction informa-
tion).

In this example message, the business transaction infor-
mation provided within the application data as XML data
relates to the transaction or describes the transaction, includ-
ing, for example, what kind of business transaction (a
purchase order or to purchase a book), who it is from and
who it is to, an ISBN number to identify the goods to be
purchased and the amount of the purchase (PurchaseA-
mount). These are merely examples of the types of business
transaction information in a message upon which the direc-
tor 145 can analyze and make routing or switching decisions
for the message.

At block 215 of FIG. 2, the director 145 (FIG. 1) parses
all or part of the application data (the XML data in this
example) and can check to ensure that the XML document
or application data is well formed (i.e., checks to make sure
at least a portion of the XML document meets the so-called
well-formedness constraints or requirements in the XML
specification or standard). Parsing generally refers to the
process of categorizing the characters or XML data that
make up the XML document as either markup (e.g., <To>)
or character data (e.g., bookstore.com).

At block 220 of FIG. 2, the application data or XML data
(including markup characters and/or character data) is then
compared to one or more configuration patterns or queries
(which may be stored in the director 145) to determine if
there is a match. According to an embodiment, the configu-
ration patterns may be dynamically changed or updated by
a user or by a program or application. For example, a
program may detect the failure of one or more servers and/or
detect the response time of servers, and then update the
configuration pattern to account for these changes in the
network (e.g., redirect certain messages from busy servers to
servers which are less busy, or from servers which have
failed to the available servers).

At block 225, if there is a match between the content of
the application data (e.g., the business transaction informa-
tion which may be provided as XML data) of a message and
a configuration pattern or query, then the director 145 directs
or switches the message to the corresponding server (or
processing node) in the data center (e.g., directed to the
specific server as indicated by the configuration pattern). If
there are multiple matches, the director 145 can just direct
the message based to the first match, or a load balancing
policy can be used to balance messages among a group of
servers. If there is no match, the message can be directed to
a default server or can be blocked. Alternatively, the con-
figuration pattern can also identify a certain pattern for
which a message should be blocked from being forwarded.
In this respect, the director 145 may also act as a filter to

US 9,473,411 B2

7

selectively pass or forward some messages while blocking
others, based upon the application data.

For example, the director 145 may be configured to direct
or switch messages based on the following configuration
patterns or queries: 5

Server IP address Port XML pattern

To = bookstore.com
To = stockquote.com
To =
computerstore.com

S1 (e.g., 150)
S2 (e.g., 160)
S3 (e.g., 170)

10.1.1.1
10.1.1.2
10.1.1.3

10

Based on the above configuration patterns, the director
145 would direct a message to server S1 (having the IP
address 10.1.1.1 and port 80) if the data for the To element
of the business transaction information is bookstore.com.
The message will be directed to server S2 (having an IP
address 10.1.1.2 and port 80) if the data for the To element
of the business transaction information is stockquote.com.
And, the director 145 will direct any messages to server S3
if the data for the To element of the business transaction
information is computerstore.com.

This advantageously allows different types of services (or
different levels of service) to be provided for messages based
on the content of the application data (such as the business
transaction information) in the message. In this example,
server S1 may be allocated to handle purchase orders for
books sent to bookstore.com. Server S2 may be allocated to
process requests for real-time stock quotes, while server S3
may be allocated to process purchase orders for computers
sent to computerstore.com.

There are many examples where content based switching
based upon the content of the application data or business
transaction information can be used to offer different or
differentiated services or even different or differentiated
levels of services. As another example, the director 145 may
be configured to direct or switch messages based on the
following configuration patterns or queries:

20

25

30

35

40

Server IP address Port XML pattern

S1 (e.g., 150)
S2 (e.g., 160)
S3 (e.g., 170)
S4 (not shown)

10.1.1.1
10.1.1.2
10.1.1.3
10.1.1.4

PurchaseAmount < $100

$100 < PurchaseAmount < $1000
$1000 < PurchaseAmount

$1000 < PurchaseAmount

45

In this example, messages for purchase orders are sent to
server S1 if the purchase amount is less than $100; messages
for purchase orders are sent to S2 if the purchase amount is
less than $1000 and more than $100; and for the high dollar
purchases, the messages for purchase orders for purchases
greater than $1000 can be sent to either of two servers. In
this fashion, the director 145 (FIG. 1) can direct or route
received messages based on the content of the application
data or business transaction information in the message. This
allows web sites or electronic-businesses (e-businesses) to
offer different or differentiated levels of services based on
the content of the application data or transaction informa-
tion.

In this particular example, two servers (S3 and S4) have
been allocated to handle the highest dollar purchase orders.
Thus, by specifically allocating greater resources (e.g., two
or more servers as compared to just one server) for the
higher dollar amount purchases as compared to the lower
dollar purchases, an e-business operating at data center 135

50

55

60

65

8

can provide a higher level of service for purchase order
messages having a higher dollar purchase amount. In this
manner, director 145 can switch or direct messages to
another network device or to a specific server based upon a
wide variety of business transaction information or applica-
tion data.

FIG. 3 is a block diagram illustrating a director according
to an example embodiment. Director 145A includes a block
310 to determine whether a received message includes XML
data.

According to an embodiment, if the message does not
include XML data, the message will be passed (e.g.,
directly) through to the output with little if any further
processing by director 145A. If the message does include
XML data, then the message will be analyzed for making a
routing or switching decision as described below.

There are many ways in which block 310 can determine
whether a received message includes XML data. According
to one embodiment, certain types of filenames (e.g.,
invoice.cgi) or filename extensions (e.g., *.cgi), which may
typically be provided in the request line, may indicate
whether the message includes XML data. Thus, the filename
extension may be analyzed by block 310 to determine
whether the message includes XML data. Other information
in the message, including other header information or even
a particular tag in the application data itself (e.g., the
<XML> start tag) can be used to identify whether or not the
message includes XML data.

According to an embodiment, block 310 is optional.
However, it is advantageous to provide block 310 where
only a small percentage of the incoming messages include
XML data. Without block 310, application data for all
messages will be parsed and compared to the configuration
pattern, and a switching decision will be generated. Thus, for
those messages which do not include XML data (and thus
cannot be switched or directed by director 145A), director
145A will add unnecessary latency in the message forward-
ing path in the absence of block 310. On the other hand,
where a significant percentage of the messages received by
director 145A include XML data, block 310 may be con-
sidered unnecessary and may be omitted (because block 310
would typically add unnecessary latency in such case).

A parser 312 is coupled to the output of the block 310 to
parse the application data (or a portion thereof). A configu-
ration memory 314 receives and stores one or more con-
figuration patterns or queries. A content based switching
decision logic 316 receives the output from the parser 312
and compares the configuration patterns to the application
data or business transaction information (e.g., including the
data and the markup characters describing the data within
the configuration pattern). The content based switching
decision logic 316 then outputs a switching or routing
decision for the message on the basis of the comparison (i.e.,
on the basis of the business transaction information). The
configuration pattern may indicate both a pattern and a
processing node or server to process the message if a pattern
is found in the message.

The output interface 320 then switches or directs the
message on the basis of this decision (e.g., routes the
message to the processing node or server indicated by the
matching configuration pattern). For example, if there is no
match, the output interface 320 may filter or block the
message, or may direct or route the message to a default
server or a predetermined server in the data center 135. If a
match is found, the output interface 320 switches or directs

US 9,473,411 B2

9

the message to the appropriate destination (e.g., to the
appropriate processing node or server within data center
135).

The configuration pattern may require multiple patterns,
or even a hierarchical arrangement of data elements in the
application data for a specific match. For example, the
decision logic 316 may receive a configuration pattern that
specifies:

Server IP address XML pattern

S1 (e.g., 150) 10.1.1.1 From = Intel; and PurchaseAmount < $100

In such a case, the switching decision logic 316 would
examine the application data (or XML data) to first identify
a From tag that is set to Intel. Next, it would examine the
transaction information to identify a PurchaseAmount that is
less than $100. If both of these are found, this indicates a
match.

If a match is found between the business transaction
information and the pattern, the content based switching
logic 316 outputs a switching decision to a output interface
320. The switching decision may, for example, indicate that
a match was found and identify the processing node or
server (e.g., by address and port number or other identifier)
where the message should be directed.

According to an example embodiment, the decision logic
316 provides an IP address and port number to be used as a
new destination IP address and destination port number for
the message. The output interface 320 may then translate the
destination IP address and port number in the packet or
envelope of the received message from the original desti-
nation IP address and port number (i.e., the IP address and
port number of the traffic manager 140 or director 145A) to
the new destination IP address and port number provided by
the decision logic 316. According to an embodiment, the
new destination [P address identifies a processing node or
server (e.g., within data center 135 or elsewhere) and the
new destination port number identifies a program or appli-
cation on that processing node or server that will receive and
process the message.

The message (e.g., with its associated TCP and IP headers
translated or modified to include the new destination address
and port number) is then output from the director 145 and
traffic manager 140. Switch 165 receives the message, and
then routes the message to the appropriate processing node
or server based on the IP address.

According to an example embodiment, a client (e.g., a
server 110, computer 120, etc., FIG. 1) that sends a message
first establishes a connection (e.g., a TCP connection), and
then sends the message via HT'TP (or other transport) to the
traffic manager 140 and/or director 145A. The director 145A
then parses the XML data, and makes a switching decision
based on the business transaction information in the message
as compared to one or more configuration patterns. A new
connection is then established between the director 145A or
traffic manager 140 and the destination processing node or
server. The message is then directed or routed from director
145A to the specified node or server.

FIG. 4 is a block diagram illustrating a traffic manager
according to another example embodiment. Traffic manager
140 includes a security accelerator 415 for encrypting out-
going messages and/or decrypting incoming messages
received from the network. According to an embodiment,
the security accelerator 415 is a Secure Sockets Layer (SSL)
accelerator, available from Intel Corporation. The security

10

15

20

25

30

35

40

45

50

55

60

65

10

accelerator 415 allows the security related tasks such as
encryption and/or decryption to be off-loaded from the
application server to the accelerator 415 of the traffic man-
ager 140.

Traffic manager 140 also includes a director 145B and a
broker 410. A decrypted message is received by broker 410
from security accelerator 415. According to an example
embodiment, broker 410 operates as both an output interface
(similar to output interface 320) and a load balancer to
balance or adjust the traffic among one or more of servers or
processing nodes within the data center 135.

Director 145B is similar to director 145A but may not
include block 310 and/or the output interface 320 of director
145 A (as these functions may be provided by the broker 410
in FIG. 4). Parser 312 (which may be optional) parses the
XML data. The content based switching decision logic 316
compares the configuration patterns to the application data
or business transaction information in the message and then
outputs a switching decision to broker 410 for the message
on the basis of the comparison. The switching decision
output to broker 410 may, for example, identify the IP
address and port number of the selected processing node or
server or application server that should receive the message.

Broker 410 performs address translation on the header(s)
for the message. The address translation performed by
broker 410 includes a destination address and destination
port translation and an optional source address and source
port translation. The destination address and port translation
may be performed by translating the original destination IP
address and port number of the received message (which
may identify the broker 410) to the IP address and port
number of the specified processing node or server (or of the
specified server resource or program). In addition, the broker
may also translate the source IP address and port number in
the packet or envelope from the originating client’s address
and port number to the IP address and port number of the
broker 410 (or of the traffic manager 140). The message
(including one or more translated addresses) is then output
from broker 410. Switch 165 (FIG. 1) receives the message
and forwards the message to the appropriate server based on
the destination address in the message. According to one
embodiment, it is not necessary to actually translate the
source IP address and port number if all return messages or
replies from the processing node or server are routed
through the broker 410.

Broker 410 also translates destination addresses for return
messages or replies from the processing node or server sent
to the client, to substitute the IP address and port number of
the client as the destination address and port for the return
message or reply. Thus, the broker 410 may operate as a
gateway or output interface between the client (FIG. 1) and
the processing node or server, by performing destination
address translation prior to routing or forwarding the mes-
sage, and performing a similar translation for return or reply
messages sent from the processing node or server back to the
client.

According to an example embodiment, broker 410 and
security accelerator 415 may be provided, for example, as an
Intel® NetStructure™ 7180 E-Commerce Director. Alterna-
tively, the broker 410 may be provided as an Intel® Net-
Structure™ 7170 Traffic Director. Both are available from
Intel Corporation, Santa Clara Calif. As a result, broker 410
may perform additional functions including load balancing
according to a load balancing policy or algorithm to adjust
the load on each server in the data center.

US 9,473,411 B2

11

The director 145 (or 145A or B), the security accelerator
415 and the broker 410 (or load balancer) may be provided
in a network apparatus in different combinations, depending
on the circumstances.

FIG. 5 is a block diagram illustrating another example
operating environment for a content based message director
145 according to an example embodiment. As noted above,
XML does not define a fixed set of tags, but rather, only
defines a syntax or structured format through which users
can define their own set of tags or their own XML based
language. In fact there are many different XML -based
languages in use, each having a unique set of tags that define
what elements should be provided to comply with that XML
language.

An XML language can be defined by a validation template
(indicating the proper form for the tags), known in XML as
a Document Type Definition (DTD). Schemas can also be
used. For example, BizTalk by Microsoft Corp. includes one
set of XML tags; CXML by Ariba Corp. includes its own set
of tags; CBL by Commerce One includes another set of
XML tags; While WML (Wireless Markup Language)
defines yet another set of XML tags for the communication
or interchange of data to and from a wireless device. Each
of these XML-based languages includes a different or
unique set of tags, and thus each is generally incompatible
with the other languages. For example, a client sending data
using CXML will not be able to properly communicate with
a processing node or server that expects to receive data only
provided according to WML..

According to an advantageous aspect of the present
invention, director 145 can receive an XML message, com-
pare the application data or business transaction information
to the configuration pattern, and then direct or route the
message (or make switching or routing decisions) to an
appropriate processing node or server regardless of the type
of XML-based language used by the message. Once the
director 145 is configured to detect or recognize one or more
specific tags and corresponding data (e.g., PurchaseA-
mount>$100), the director 145 can direct or route the
message based on the content of the application data (e.g.,
based on the business transaction information provided as
XML data), regardless of the type of XML -based language
that is used by the message.

As shown in FIG. 5, Director 145 is coupled to switch
165. There are three sets of servers (or data centers) coupled
to the switch 165, including: a set of BizTalk servers 510
(including servers 1 and 2) which communicate data using
an XML based language known as BizTalk; a set of Ariba
servers 515 (including servers 3 and 4) which communicate
data using the XML based language known as CXML,; and
a set of wireless servers 520 (including servers 5 and 6)
which communicate data using only the XML based lan-
guage known as Wireless Markup Language or WML. These
are merely provided as examples. Thus, the director 145 can
operate as a gateway or interface, receiving messages from
a variety of different clients using a variety of different XML
based languages, and then directing or routing the messages
to the appropriate processing node or servers.

I1. Validation Acceleration

FIG. 6 is a block diagram illustrating a network including
a validation accelerator 142 according to an example
embodiment. According to an advantageous embodiment,
the data center 135 also includes a validation accelerator 142
to pre-validate received messages before the messages are
sent to one of the application servers or processing nodes.

10

15

20

25

30

35

40

45

50

55

60

65

12

According to an example embodiment, the validation accel-
erator 142 is provided as a network apparatus. In other
words, according to an example embodiment, the validation
accelerator 142 can be coupled between a network 130 and
a plurality of processing nodes or application servers (e.g.,
servers 150, 160 and 170). Providing the validation accel-
erator 142 as a network apparatus (i.e., separate from the
application servers) allows the computationally expensive
task of document validation to be off-loaded from the
application servers to the validation accelerator 142. Alter-
natively, a plurality of validation accelerators 142 may be
provided, with one validation accelerator 142 being pro-
vided for one or more application servers or other processing
nodes.

As noted above, an XML document must be checked to
ensure it meets the basic syntax and format of XML (i.e.,
determine whether the document is “well formed”). In
addition, the XML standard also optionally allows a docu-
ment to be validated, which is a more rigorous check to
determine if the structure or grammar of the XML document
complies with structure or grammar required by the particu-
lar XML based language. XML allows a document to be
validated against a validation template. A validation tem-
plate defines the grammar and structure of the XML docu-
ment (including required elements or tags, etc.).

There can be many types of validation templates such as
a document type definition (DTD) in XML or a schema, as
examples. These two validation templates are used as
examples to explain some features according to example
embodiments. Many other types of validation templates are
possible as well. A schema is similar to a DTD because it
defines the grammar and structure which the document must
conform to be valid. However, a schema can be more
specific than a DTD because it also includes the ability to
define data types (e.g., characters, numbers, integers, float-
ing point, or custom data types). In addition, unlike a DTD
(under present standards), a schema may be required to be
well formed. Thus, both the application data and the schema
can both be parsed and checked for basic syntax (or well-
formedness). Therefore, at least for some applications, it is
expected that schemas will possibly become more common
than DTDs in the future.

As noted above, validating a received document against a
validation template is optional according to the XML stan-
dard. If a document is to be validated against a particular
validation template, the XML document will include vali-
dation instructions (or validation code) at the beginning of
the document. One example of validation instructions can be
a document type declaration, as commonly known in XML.
Another example is a schema (or a reference to an external
schema). According to current XML, the validation instruc-
tions (e.g., document type declaration or schema, etc.) is an
optional area of the document that declares the structure,
element types, attributes, etc. of the validation template. To
be a valid document, the structure and grammar of the
application data in the document must match the structure
and grammar defined by the validation template (if valida-
tion instructions are included in the document). The valida-
tion template can be provided internal to (or within) the
document and/or external to the document.

FIG. 7 is a diagram illustrating an example message
according to an example embodiment. The example mes-
sage shown in FIG. 7 includes an XML document 710. XML
document 710 includes XML application data 720 (e.g.,
including business transaction information) and validation
instructions 715.

US 9,473,411 B2

13

The application data 720 is the application data that will
be processed by an application server. The application data
720 may include, for example, business transaction infor-
mation, such as a list items to be purchased, prices, quan-
tities or other specific details of a transaction or a request for
information (e.g., request for stock quote, transaction
details).

According to an embodiment, the presence of one or more
validation instructions 715 indicates that the document can
(or should) be validated before processing the application
data 720 based on a validation template provided within
and/or identified by the validation instructions 715. In other
words, according to an embodiment, the presence of vali-
dation instructions may indicate that the application data
should be pre-validated at a network apparatus (such as
validation accelerator 142) before passing the data to an
application server for further processing. To indicate to the
application server that the document (or the application data)
has been validated, the validation instructions may be
removed from the document and/or an indication (such as a
comment or instruction in the data or a field set in the
message) may be provided to indicate that the application
data or message has been validated (i.e., pre-validated).
According to current XML, document validation is optional
(e.g., by the application server), even when validation
instructions 715 are present. However, it is possible that in
the future, validation (in XML or other languages) may be
required.

If the document should be associated with a validation
template (document type definition, schema, etc.) for docu-
ment validation (i.e., to allow document validation), the
document will typically include one or more validation
instructions 715. The validation instructions 715 provide or
identify the validation template (or document type defini-
tion) which defines the document structure and grammar
(e.g., elements, attributes) to which the application data 720
of document 710 must conform. The validation template can
include an internal component and/or an external compo-
nent.

In this example shown (e.g., for XML), the validation
instructions 715 (or validation template) are provided as a
document type declaration. The validation instructions 715
begin with the DOCTYPE statement “<DOCTYPE hogs-
forsale . . . ” which indicates that there is a validation
template, which may be provided within the document (i.e.,
as internal component 719) or provided external to the
document (i.e., an external component identified as “hogs-
.dtd”). Therefore, in this example, the validation instructions
715 provide an internal component 719 of a validation
template and an external component identifier 717 identify-
ing an external component. The internal component 719 and
the external component (not shown) together form the
validation template for this document (i.e., for validating the
application data 720 for document 710). According to an
embodiment, if validation is being performed, the presence
of the DOCTYPE statement (or other validation instruc-
tions) typically will cause an application or application
server to validate the application data 720 in the message
against the validation template.

The internal component 719 of the validation template
defines that a valid hosgsforsale document must include the
following elements: type, avg wt, quantity and price/hog,
etc. This is just an example.

In this example, the identifier “hogs.dtd” identifies an
external entity or file which is an external component of the
validation template. The external component can be located
on a remote server or other location based on the external

10

15

20

25

30

35

40

45

50

55

60

65

14

component identifier 717. The external component of the
validation template (identified as “hogs.dtd””) may include
additional requirements on the structure or grammar of the
application data 720 of the document 710. The external
component identifier 717 may be provided as the complete
address, or as a relative address or pointer (e.g., relative to
the address or location of the source or originating node of
the message). For example, the “hogs.dtd” identifier listed in
the validation instructions 715 may actually reference the
“hogs.dtd” external component 717 which may be found at
(for example): oasis.xml.org/farming/livestock/hogs.dtd. As
noted above, examples of validation templates include a
Document Type Definition (e.g., for XML), a schema, etc.

FIG. 8 is a flow chart illustrating an example operation of
a validation accelerator according to an example embodi-
ment. At block 810, the validation accelerator 142 receives
a message. The message may be sent over any transport or
protocol(s), such as Transmission Control Protocol (TCP),
File Transfer Protocol (FTP), Simple Mail Transfer Protocol
(SMTP), Wireless Application Protocol (WAP, which may
be used to send and receive information with wireless
devices), Hypertext Transfer Protocol (HTTP), etc. The
general teachings and the operation of the invention are not
dependent upon any particular transport or protocol, but
rather are transport-independent.

At block 815, a validation template is obtained by the
validation accelerator 142 for validating the document or
message (e.g., for validating the application data 720 in the
document 710, FIG. 7). This may include first determining
if validation instructions are present in the document or
message. If no validation instructions are present, then
validation will not be performed. If validation instructions
are present, the validation accelerator 142 then determines
whether the validation template for the document is pro-
vided as an internal component and/or an external compo-
nent based upon the syntax of or one or more statements in
the validation instructions 715.

If the validation template is provided within the document
(i.e., as an internal component), the validation template is
parsed from or separated from the remainder of the docu-
ment. If the validation instructions 715 provide a external
component identifier 717, then the validation accelerator
142 then retrieves or obtains the external component (e.g.,
from a remote server or node).

At block 820 of FIG. 3, the validation accelerator 142
validates at least a portion of the message (e.g., validates the
application data 720) by comparing the structure and gram-
mar of the application data 720 to the structure and grammar
defined or required by the validation template.

At block 825, if the document or message is valid, the
validation accelerator 142 then removes the (preferably all
of the) validation instructions, including any statements that
might cause the document to be validated (e.g.,a DOCTYPE
statement), any internal component(s) of the validation
template and any references or identifiers to external com-
ponents of the validation template.

At block 830, the validated document (with the validation
instructions removed) is then sent to an application server or
other processing node for processing.

Alternatively (or in addition to removing the validating
instructions), an indication can be added to the message
indicating to the application server that the application data
or message has already been validated (i.e., pre-validated).
This pre-validation indication can be provided, for example,
as a field in the message, as an instruction or comment in the
application data itself, or using another technique. For
example, In the XML specification, besides element tags,

US 9,473,411 B2

15

and data, there is something known as a processing instruc-
tion tag which provides an “escape hatch” to allow infor-
mation specific to an application to be embedded in an XML
document. Processing instructions are not considered to be
part of the character data content of an XML document, but
they are always passed on to the XML application by the
parser. The format is <? . . . 7> for the processing instruction
tag. Thus, according to one embodiment, after the validation
instructions (or the DTD or schema or reference thereto) has
been removed, the following comment or instruction tag
could be added near the beginning of the document (or other
location): <?validated by intel?>.

By pre-validating the document and then removing the
validation instructions from the document (and/or adding a
pre-validation indication to the document or message), the
expensive step of validation is off-loaded from the applica-
tion server to a network apparatus, network appliance or
other system (which may be referred to, for example, as the
validation accelerator 142).

FIG. 9 is a block diagram illustrating a network apparatus
according to another example embodiment. According to an
example embodiment, network apparatus 905 may include
one or more of the blocks shown in FIG. 9. For example, in
addition to the validation accelerator 142, a network appa-
ratus 905 may include a security accelerator 415, a content
based message director 145 and/or a load balancer 950.
Alternatively, all four of the components can be provided in
a network apparatus 905, or any sub-combination thereof.

III. Scalable Network Apparatus

In some instances, a single validation accelerator 142 may
not be able to handle validation functions for all incoming
XML traffic. In such cases, two or more validation accel-
erators 142 can be cascaded together or (e.g., connected in
series) to accommodate increased traffic. FIG. 10 is a block
diagram illustrating an example scalable network apparatus
including multiple validation accelerators 142 according to
an example embodiment. In the example network apparatus
1005 shown in FIG. 10, there are three validation accelera-
tors 142 which are cascaded together (e.g., connected in
series): validation accelerators 142A, 142B and 142C. Vali-
dation accelerator 142A is coupled to the output of the
security accelerator 415. Validation accelerator 142B is
coupled to the output of validation accelerator 142A. And,
validation accelerator 142C is coupled to the output of
validation accelerator 142B. While three validation accel-
erators are shown in FIG. 10, any number can be cascaded
together to provide a validation accelerator having increased
capacity (or improved ability to accommodate higher traffic
loads).

Likewise, in some cases a single content based message
director 145 may not be able to handle the parsing and
switching (or directing) of all incoming messages (e.g., of all
incoming XML messages). In such cases, two or more
content based message directors 145 can be cascaded
together (or connected in series together) to handle increased
traffic. FIG. 11 is a block diagram illustrating an example
scalable network apparatus including multiple content based
message directors according to an example embodiment. As
shown in FIG. 11, a network apparatus 1125 includes several
content based message directors 145 which are cascaded
together, including message directors 145A, 145B and
145C. Similar to validation accelerators 142A-C of FIG. 10,
the three content based message directors 145A-C of FIG. 11
are cascaded or connected in series between a security
accelerator 415 and application servers 1 and 2. While only

30

40

45

50

55

16

three message directors 145 are shown in FIG. 11, any
number of content based message directors 145 can be
cascaded together.

The operation of the network apparatus 1005 (FIG. 10)
and network apparatus 1125 (FIG. 11) will now be briefly
describe. Note that the following description applies gener-
ally to both the validation accelerators 142 of FIG. 10 and
the content based message directors 145 of FIG. 11, except
where some specific differences are noted. The accelerator
142 and the director 145 will both be generally referred to
as a network unit.

Each network unit (e.g., each validation accelerator 142 or
message director 145) includes a spillover feature that can
be enabled. When the spillover feature is enabled, the
network unit determines whether it can process an incoming
message based on some loading criteria. If it can process the
message, the message is parsed and then processed (i.e.,
pre-validated for accelerator 142 and directed or routed for
director 145). If it cannot process the incoming message
based on the criteria, then the message is passed to the next
network unit (accelerator 142 or director 145) in series,
typically without parsing or processing the application data.

There are many different ways in which a loading criteria
can be measured. For example, the accelerator 142 or
message director 145 may determine if it can process the
incoming message within a predetermined time limit, or
determine whether sufficient resources (e.g., processing
capacity, memory) are presently available at the network
unit to process the message, or determine whether the traffic
load (or the processed traffic load) at the network unit has
exceeded a threshold. In one simple embodiment, the net-
work unit determines whether it is “busy” or whether it can
process the received message. If it is “busy,” the message is
simply passed (unprocessed) to the next network unit. If the
unit can process the message (i.e., not “busy”), then the
network unit processes the received message.

The traffic load can be dynamically measured, for
example, on a per-connection basis or on a per-packet or
per-message basis, and then used to determine which mes-
sages should be parsed and processed (i.e., either pre-
validated or directed), and which messages should simply be
passed to the next network unit (or passed to the application
server if the unit is last in series). For example, if the number
of connection requests or number of active connections with
the network unit exceeds a threshold, then all further
received messages (which are associated with other connec-
tions) will be passed onto the next network unit, until the
number of connections decreases to less than or equal to the
threshold. Alternatively, if the traffic load is measured on a
per-packet or a per-message basis, then when the number of
messages being processed or waiting to be processed at a
network unit exceeds a threshold, then all further messages
will be passed to the next network unit, until the number of
messages being processed or waiting to be processed
decreases back to the threshold or less than the threshold.
According to yet another embodiment, received messages
are placed in a queue at a network unit to await processing
at the network unit. The messages are removed from the
queue after being processed (e.g., either validated or routed).
When the queue at the network unit reaches a predetermined
level of fullness, the subsequent messages are then passed
onto the next network unit until the queue decreases below
the predetermined level of fullness.

A more sophisticated load balancing type algorithm (such
as round-robin) can be employed at one or more network
units. For example, if there are two network units cascaded
together in a network apparatus, the first network unit can

US 9,473,411 B2

17

automatically pass every other message (or messages asso-
ciated with every other connection) onto the second network
unit in attempt to share the traffic load more evenly across
the available cascaded network units.

According to an example embodiment, the security accel-
erator 415 listens or detects messages (e.g., packets) on a
specific port number (e.g., port number 443) where
encrypted messages will be received. After being decrypted,
the message is then output (decrypted or “in the clear”) on

5

a different port number (such as port number 80, which 10

indicates HTTP messages for example). Several security
accelerators can also be cascaded together, which cases, the
security accelerator can also pass on an encrypted message
to the same destination port number (port number 443)
because the message is still encrypted. This will cause the
message to be decrypted by the next security accelerator
415. The decrypted is finally output by the cascaded group
of security accelerators on to the next group of network units
(e.g., either message directors 145 or validation accelerators
142).

The processing that goes on at each network unit (either
validation accelerator 142 or message director 145) will be
briefly described. For the content based message director
145, the processing may include the following (for
example):

Determine if the message can be processed (based on the

criteria);
if it can be processed, then process as follows:

parse the application data

validate the message (or at least a portion of the
application data)

either remove the validation instructions and/or add
a validation indication (e.g., <?validated by
intel?>); a validation indication can be provided in
the application data, within a header or specific
field of the message or other location

subsequent network units receive the message, detect
the validation indication (e.g., in a specific field),
and then pass the message on without processing
it.

For the validation accelerator 142, the processing may
include the following (for example):

Determine if the message can be processed (based on the

criteria);
if it can be processed, then process as follows:

parse the application data

compare the pattern/query to the application data
(e.g., XML data)

if a match is found, then translate the source and/or
destination addresses and port numbers, and then
output the message.

According to an embodiment, the translated desti-
nation address and port number in the message
will not match the source address and port number
of any subsequent network units in series, and
thus, the message will simply be forwarded or
passed on; alternatively, after processing, a value
can be added to a header in the message or packet
or a value added to the application data (or other
location in the message) to indicate that the mes-
sage has been pre-processed, and thus should not
be processed again at another network unit.

The network unit (or XML box) can be for either XML
Directing or Validation acceleration. They can both use an
XML parser.

When the XML box’s s spillover option is enabled, if a given
XML box (or network unit) cannot process a request within

20

25

30

35

40

45

50

55

60

18

a specified interval, the request is passed on, not parsed, to
the next XML box (or network unit) in line.
The last XML box (network unit) on the server side can also
be enabled to spill to the server. Spillover is performed
dynamically on a connection-by-connection basis (or by
packets)

A clear advantage is the ability to scale existing XML
directors and or XML validation accelerators and to allow
for fail-over if one of the devices stops working.

Another Example Logic Flow

The device will look at all incoming packets (not just
connections.)

If the IP address and port number in packet headers is
indicated in a mapping then assemble the application
data from one or more packets. Hold onto the packet(s)
for further processing.

{

Execute the XML parser.

If using XML director and a match is found (matches
a pattern/query), then convert the matching IP and
port pair to the destination IP and port pair and send
the converted packets to the next network processing
node (next network unit).

If using XML validation accelerator 142, just validate and
then modify the application data (remove validation instruc-
tions and/or add validation indication to data) and send the
converted packets to the next network processing node/
network unit. }

Several embodiments of the present invention are spe-
cifically illustrated and/or described herein. However, it will
be appreciated that modifications and variations of the
present invention are covered by the above teachings and
within the purview of the appended claims without departing
from the spirit and intended scope of the invention.

What is claimed is:

1. A system comprising:

a first message director comprising hardware, the first

message director to:

receive a message written in an XML -based language,
the message comprising application data;

determine whether one or more configuration patterns
of at least one configuration pattern match the appli-
cation data of the message;

if no configuration patterns of the at least one configu-
ration pattern match the application data of the
message, select a predetermined default application
server of a plurality of application servers;

if a first configuration pattern of the at least one
configuration pattern matches the application data of
the message, select a first application server from the
plurality of application servers based on the first
configuration pattern;

direct the message towards the selected application
server; and

block a second message written in an XML-based
language when application data of the second mes-
sage matches a second configuration pattern of the at
least one configuration pattern.

2. The system of claim 1, further comprising a security
accelerator to perform decryption of the message before the
message is passed to the first message director.

3. The system of claim 1, further comprising a validation
accelerator to validate the message against an XML schema.

US 9,473,411 B2

19

4. The system of claim 1, wherein the selection of the first
application server is further to be based on a load balancing
technique.

5. The system of claim 1, further comprising a second
message director to:

determine whether one or more configuration patterns of

the at least one configuration pattern match application
data of a second message written in the XML-based
language; and

direct the second message towards an application server

selected based on a match between a configuration
pattern of the at least one configuration pattern and
application data of the second message.

6. The system of claim 5, wherein the second message is
to be forwarded to the second message director when a
spillover feature of the first message director is enabled and
a loading criteria is met.

7. The system of claim 6, wherein the loading criteria is
based on whether the first message director can process the
message within a predetermined time limit.

8. The system of claim 6, wherein the loading criteria is
based on processing capacity of the first message director.

9. The system of claim 6, wherein the loading criteria is
based on a traffic load of the first message director.

10. The system of claim 6, wherein the loading criteria is
based on a predetermined number of active connections.

11. The system of claim 1, wherein the application data
comprises business transaction information describing at
least a portion of a transaction to occur with the selected
application server.

12. At least one machine readable non-transitory storage
medium having instructions stored thereon, the instructions
when executed by at least one processor to cause a first
message director to:

receive a message written in an XML -based language, the

message comprising application data;

determine whether one or more configuration patterns of

at least one configuration pattern match the application
data of the message;

if no configuration patterns of the at least one configura-

tion pattern match the application data of the message,
select a predetermined default application server of a
plurality of application servers;

if a first configuration pattern of the at least one configu-

ration pattern matches the application data of the mes-
sage, select a first application server from the plurality
of application servers based on the first configuration
pattern;

direct the message towards the selected application

server; and

block a second message written in an XML -based lan-

guage when application data of the second message
matches a second configuration pattern of the at least
one configuration pattern.

13. The medium of claim 12, the instructions when
executed by at least one processor to further cause a security
accelerator to perform decryption of the message before the
message is passed to the first message director.

14. The medium of claim 12, the instructions when
executed by at least one processor to further cause a vali-
dation accelerator to validate the message against an XML
schema.

15. The medium of claim 12, wherein the selection of the
first application server is further to be based on a load
balancing technique.

5

15

20

30

35

40

45

50

55

60

65

20

16. The medium of claim 12, the instructions when
executed by at least one processor to further cause a second
message director to:

determine whether one or more configuration patterns of

the at least one configuration pattern match application
data of a second message written in the XMIL-based
language; and

direct the second message towards an application server

selected based on a match between a configuration
pattern of the at least one configuration pattern and
application data of the second message.

17. The medium of claim 16, wherein the second message
is to be forwarded to the second message director when a
spillover feature of the first message director is enabled and
a loading criteria is met.

18. The medium of claim 17, wherein the loading criteria
is based on whether the first message director can process
the message within a predetermined time limit.

19. The medium of claim 17, wherein the loading criteria
is based on processing capacity of the first message director.

20. The medium of claim 17, wherein the loading criteria
is based on a traffic load of the first message director.

21. The medium of claim 17, wherein the loading criteria
is based on a predetermined number of active connections.

22. The medium of claim 17, wherein the application data
comprises business transaction information describing at
least a portion of a transaction to occur with the selected
application server.

23. A system comprising:

a plurality of application servers; and

a first message director comprising hardware, the first

message director to:

receive a message written in an XML -based language,
the message comprising application data;

determine whether one or more configuration patterns
of at least one configuration pattern match the appli-
cation data of the message;

if no configuration patterns of the at least one configu-
ration pattern match the application data of the
message, select a predetermined default application
server of a plurality of application servers;

if a first configuration pattern of the at least one
configuration pattern matches the application data of
the message, select a first application server from the
plurality of application servers based on the first
configuration pattern;

direct the message towards the selected application
server; and

block a second message written in an XML-based
language when application data of the second mes-
sage matches a second configuration pattern of the at
least one configuration pattern.

24. The system of claim 23, wherein the selected appli-
cation server of the plurality of application servers is to
perform a transaction specified by the application data.

25. The system of claim 23, further comprising a security
accelerator to perform decryption of the message before the
message is passed to the first message director.

26. The system of claim 23, further comprising a valida-
tion accelerator to validate the message against an XML
schema.

27. The system of claim 23, wherein the selection of the
first application server is further to be based on a load
balancing technique.

28. The system of claim 23, further comprising a second
message director to:

US 9,473,411 B2
21

determine whether one or more configuration patterns of
the at least one configuration pattern match application
data of a second message written in the XML-based
language; and

direct the second message towards an application server 3
selected based on a match between a configuration
pattern of the at least one configuration pattern and
application data of the second message.

#* #* #* #* #*

22

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,473,411 B2 Page 1of1
APPLICATION NO. - 14/701310

DATED : October 18, 2016

INVENTOR(S) : John B. Abjanic et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

In item (60), in Column 1, in “Related U.S. Application Data”, Line 10, delete “which™ and
insert -- and --, therefor.

Signed and Sealed this
Third Day of January, 2017

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

